Lucas Pacioli

Lucas Pacioli
Lucas Pacioli
    Lucas Pacioli
     Catholic_Encyclopedia Lucas Pacioli
    (Paciuolo.)
    Mathematician, born at Borgo San Sepolco, Tuscany, toward the middle of the fifteenth century; died probably soon after 1509. Little is known concerning his life. He became a Franciscan friar and was successively professor of mathematics at Perugia, Rome, Naples, Pisa, and Venice. With Leonardo da Vinci, he was in Milan at the court of Louis the Moor, until the invasion of the French. The last years of his life were spent in Florence and Venice. His scientific writings, though poor in style, were the basis for the works of the sixteenth-century mathematicians, including Cardan and Tartaglia. In his first work, "Summa de Arithmetica, Geometria, Proportioni, et Proportionalita", Venice, 1494, he drew freely upon the writings of Leonardo da Pisa (Fibonacci) on the theory of numbers. Indeed he has thus preserved fragments of some of the lost works of that mathematician. The application of algebra to geometry, and the treatment, for the theory of probability also help to make this treatise noteworthy. The "Divina Proportioni" (Venice, 1509), was written with some co-operation on the part of Leonardo da Vinci. It is of interest chiefly for some theorems on the inscription of polyhedrons in polyhedrons and for the use of letters to indicate numerical quantities. His edition of Euclid was published in 1509 in Venice.
    PAUL H. LINEHAN
    Transcribed by Christine J. Murray

The Catholic Encyclopedia, Volume VIII. — New York: Robert Appleton Company. . 1910.


Catholic encyclopedia.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Pacioli — Luca Pacioli Luca Pacioli avec son élève Guidobaldo Ier de Montefeltro (1495), attribué à Jacopo de Barbari, musée Capodimonte de Naples Luca Bartolomes Pacioli, dit Luca di Borgo (v.1445 à Borgo Sansepo …   Wikipédia en Français

  • Pacioli, Lucas — • Tuscan mathematician (d. c. 1509) Catholic Encyclopedia. Kevin Knight. 2006 …   Catholic encyclopedia

  • Luca Pacioli — Portrait of Luca Pacioli, traditionally attributed to Jacopo de Barbari, 1495 (attribution controversial).[1] Fra Luca Bartolomeo de Pacioli (sometimes Paccioli or Paciolo; 1446/7 – 1517) was an Italian mathematician, Franciscan friar,… …   Wikipedia

  • Leonardo da Vinci — /lee euh nahr doh deuh vin chee, lay /; It. /le aw nahrdd daw dah veen chee/. 1452 1519, Italian painter, sculptor, architect, musician, engineer, mathematician, and scientist. * * * born April 15, 1452, Anchiano, Republic of Florence died May 2 …   Universalium

  • painting — /payn ting/, n. 1. a picture or design executed in paints. 2. the act, art, or work of a person who paints. 3. the works of art painted in a particular manner, place, or period: a book on Flemish painting. 4. an instance of covering a surface… …   Universalium

  • Truncated icosahedron — The truncated icosahedron is an Archimedean solid. It comprises 12 regular pentagonal faces, 20 regular hexagonal faces, 60 vertices and 90 edges. Construction This polyhedron can be constructed from an icosahedron with the 12 vertices truncated… …   Wikipedia

  • Icosaedre tronque — Icosaèdre tronqué Icosaèdre tronqué Type Solide d Archimède Faces Hexagones et Pentagones Éléments :  · Faces  · Arêtes  · Sommets  · Caractéristique   32 90 60 2 Faces par sommet …   Wikipédia en Français

  • Icosaèdre Tronqué — Type Solide d Archimède Faces Hexagones et Pentagones Éléments :  · Faces  · Arêtes  · Sommets  · Caractéristique   32 90 60 2 Faces par sommet …   Wikipédia en Français

  • Icosaèdre tronqué — Type Solide d Archimède Faces Hexagones et Pentagones Éléments :  · Faces  · Arêt …   Wikipédia en Français

  • Perspective axonométrique — Une commode en perspective axonométrique. En dessin technique et en architecture, une perspective parallèle, ou perspective cylindrique ou perspective axonométrique est une forme de représentation en dimension deux d objets en dimension trois qui …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”